A Conserved C-terminal Element in the Yeast Doa10 and Human MARCH6 Ubiquitin Ligases Required for Selective Substrate Degradation.

نویسندگان

  • Dimitrios Zattas
  • Jason M Berk
  • Stefan G Kreft
  • Mark Hochstrasser
چکیده

Specific proteins are modified by ubiquitin at the endoplasmic reticulum (ER) and are degraded by the proteasome, a process referred to as ER-associated protein degradation. In Saccharomyces cerevisiae, two principal ER-associated protein degradation ubiquitin ligases (E3s) reside in the ER membrane, Doa10 and Hrd1. The membrane-embedded Doa10 functions in the degradation of substrates in the ER membrane, nuclear envelope, cytoplasm, and nucleoplasm. How most E3 ligases, including Doa10, recognize their protein substrates remains poorly understood. Here we describe a previously unappreciated but highly conserved C-terminal element (CTE) in Doa10; this cytosolically disposed 16-residue motif follows the final transmembrane helix. A conserved CTE asparagine residue is required for ubiquitylation and degradation of a subset of Doa10 substrates. Such selectivity suggests that the Doa10 CTE is involved in substrate discrimination and not general ligase function. Functional conservation of the CTE was investigated in the human ortholog of Doa10, MARCH6 (TEB4), by analyzing MARCH6 autoregulation of its own degradation. Mutation of the conserved Asn residue (N890A) in the MARCH6 CTE stabilized the normally short lived enzyme to the same degree as a catalytically inactivating mutation (C9A). We also report the localization of endogenous MARCH6 to the ER using epitope tagging of the genomic MARCH6 locus by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated genome editing. These localization and CTE analyses support the inference that MARCH6 and Doa10 are functionally similar. Moreover, our results with the yeast enzyme suggest that the CTE is involved in the recognition and/or ubiquitylation of specific protein substrates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Membrane topology of the yeast endoplasmic reticulum-localized ubiquitin ligase Doa10 and comparison with its human ortholog TEB4 (MARCH-VI).

Quality control machinery in the endoplasmic reticulum (ER) helps ensure that only properly folded and assembled proteins accumulate in the ER or continue along the secretory pathway. Aberrant proteins are retrotranslocated to the cytosol and degraded by the proteasome, a process called ER-associated degradation. Doa10, a transmembrane protein of the ER/nuclear envelope, is one of the primary u...

متن کامل

N-terminal acetylation of the yeast Derlin Der1 is essential for Hrd1 ubiquitin-ligase activity toward luminal ER substrates

Two conserved ubiquitin ligases, Hrd1 and Doa10, mediate most endoplasmic reticulum-associated protein degradation (ERAD) in yeast. Degradation signals (degrons) recognized by these ubiquitin ligases remain poorly characterized. Doa10 recognizes the Deg1 degron from the MATα2 transcription factor. We previously found that deletion of the gene (NAT3) encoding the catalytic subunit of the NatB N-...

متن کامل

An unusual transmembrane helix in the endoplasmic reticulum ubiquitin ligase Doa10 modulates degradation of its cognate E2 enzyme.

In the endoplasmic reticulum (ER), nascent membrane and secreted proteins that are misfolded are retrotranslocated into the cytosol and degraded by the proteasome. For most ER-associated degradation (ERAD) substrates, ubiquitylation is essential for both their retrotranslocation and degradation. Yeast Doa10 is a polytopic membrane ubiquitin ligase (E3) that along with its cognate ubiquitin-conj...

متن کامل

The yeast ERAD-C ubiquitin ligase Doa10 recognizes an intramembrane degron

Aberrant endoplasmic reticulum (ER) proteins are eliminated by ER-associated degradation (ERAD). This process involves protein retrotranslocation into the cytosol, ubiquitylation, and proteasomal degradation. ERAD substrates are classified into three categories based on the location of their degradation signal/degron: ERAD-L (lumen), ERAD-M (membrane), and ERAD-C (cytosol) substrates. In Saccha...

متن کامل

Aberrant substrate engagement of the ER translocon triggers degradation by the Hrd1 ubiquitin ligase

Little is known about quality control of proteins that aberrantly or persistently engage the endoplasmic reticulum (ER)-localized translocon en route to membrane localization or the secretory pathway. Hrd1 and Doa10, the primary ubiquitin ligases that function in ER-associated degradation (ERAD) in yeast, target distinct subsets of misfolded or otherwise abnormal proteins based primarily on deg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 291 23  شماره 

صفحات  -

تاریخ انتشار 2016